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Geometry Processing

Geometry Processing
Turning real-world object surfaces into virtual representations and processing
them.
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Shape representation
▶ Point sets: sparse but no watertight PointNet [Qi 2017], KPConv

[Thomas 19]...
▶ Meshes: efficient but needs to be computed EdgeConv [Hanocka 2019],

DeltaConv [Wiersma 2022]
▶ Implicit Representation: hard to use for analysis purpose

Issues for Deep Learning on surfaces
Need for an equivariant convolution on the surface.

Shape Database

Lack of data variety (geometry and topology)
S
h
a
p
eN

et

(a) (b) (c)

3/59



Implicit Representation in Geometry Processing

▶ Representing a shape through a set of distances to a set of primitives
[Bloomenthal 90]

▶ Mesh reconstruction (Marching Cubes [Lorensen 87]) or Direct
Rendering (Sphere tracing [Hart 96])

▶ For surface reconstruction: from a point set build a signed distance field
[Hoppe 92]

▶ Poisson Surface Reconstruction [Kazhdan 2006], [Alexa 2003] Moving
Least Squares Surfaces

A long standing idea
Find a good function basis for representing the signed distance function.
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Implicit Neural Representation in Geometry
Processing
INR
Train a neural network to represent a shape. (Deep SDF [Park 2019],
Occupancy Network [Mescheder 2018]).

▶ Optimization per shape: no database.
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Focus on two problems:
▶ Shape analysis: extract the topology of a shape
▶ Shape synthesis: interpolate between two shapes
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Signed distance fields
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Signed distance field are useful
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▶ Requires to compute ray/surface intersection.
▶ Direct intersection with explicit representations (Meshes/Geometric

primitives)
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Sphere tracing [Hart 1996]

1. Input: a point x and direction v,
a signed distance field u.

2. Initialize t = 0

3. While t < D

3.1 xt = x+ tv
3.2 d = u(xt)
3.3 If d < ε Return xt

3.4 Else Increment t = t+ d

Implicit Neural Representations 8/59



Neural Skeleton: Regularizing INR away from
the surface

▶ Neural skeleton: implicit neural representation away from the surface,
Mattéo Clémot and Julie Digne 2023
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Extract the medial axis of a shape based on an
INR

▶ Extract topological data from shapes (genus, medial axis) even with
noise, missing data and outliers.

▶ All the topological information is included within the signed distance
field.

▶ How do we represent this signed distance field? Implicit Neural
Representation
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Medial Axis

Definition
A point p belongs to the medial axis of a compact shape if it has at least two
distinct nearest neighbors on the shape surface.
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Medial Axis: classical methods
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▶ Curve Skeleton (Mesh Contraction [Au 2008], Mean Curvature Flow
[Tagliasacchi 2012], visual hull [Livesu 2012], local symmetries
[Tagliasacchi 2009, Huang 2012])

▶ Computational Geometry: Voronoi subcomplex [Dey 2002], power crust
[Amenta 2001]

▶ Signed distance field and voxelization: VoxelCores [Yan 2018]

Result
Often needs to be compressed. [Dou 2022]
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Optimization Process

▶ Input data a set of points (xi,ni), i ∈ I

▶ Look for u continuous and a.e. C1 such that: ∥∇u∥ = 1
u|∂S = 0
∇u|∂S = n

(1)

▶ Loss [Gropp 2020]

l(θ) =

∫
x∈S

(|uθ(x)|2+ τ∥∇uθ(x)−n(x)∥2)dx+λ

∫
x∈R3

(∥∇uθ(x)∥− 1)2dx

▶ Approximation by Monte Carlo
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Eikonal Equation

▶ Infinite number of solutions
▶ Viscosity solution theory: allows to select

the right solution
▶ Use smooth eikonal equation (not

practical [Lipman 2019])

∥∇u∥ − ε∆u = 1

▶ Consequence: blobs appear
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Infinite number of solutions
Not an issue close to the surface – but far away?
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Which neural network?

▶ MLP (6 layers, 128-256 neurons/layer)
with ReLU activation functions

▶ ReLU: piecewise constant gradient.
▶ Sitzman (2021) replaces ReLU with sine

activation function: smooth function

IGR SIREN

u
∥∇

u
∥

∥∇
∥∇

u
∥∥

Implicit Neural Representations 15/59



TV regularization

▶ Look for a smooth surrogate for the signed
distance function

▶ Medial axis: zeros of the gradient
▶ Add the TV of the gradient norm.

LTV =

∫
R3

∥∇∥∇u∥(p)∥dp

▶ Rationale: minimize the measure of the zeros of
the gradient set (counter-example!)
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TV regularization - some analysis

▶ The TV term favors that u has no second order differential content along
the gradient lines

Since ∇u = (ux, uy, uz), it follows:

∇∥∇u∥ = ∇
√
u2
x + u2

y + u2
z

=
1

2∥∇u∥

2uxuxx + 2uyuxy + 2uzuxz

2uxuxy + 2uyuyy + 2uzuyz

2uxuzx + 2uyuzy + 2uzuzz


= Hu

∇u
∥∇u∥
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Total loss

▶ Eikonal loss:
Leikonal =

∫
R3

(1− ∥∇u(p)∥)2 dp (2)

▶ Surface loss:

Lsurface =

∫
∂Ω

u(p)2dp+

∫
∂Ω

1− n(p) · ∇u(p)
∥n(p)∥ ∥∇u(p)∥

dp (3)

▶ Learning point loss

Llearning =
∑
p∈P

(u(p)− d(p))2 +
∑
p∈P

1− ∇u(p) · ∇d(p)
∥∇u(p)∥ ∥∇d(p)∥

(4)

▶ + TV loss

Loss

L = λeLeikonal + λsLsurface + λlLlearning + λTV LTV (5)
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Resulting Fields
Ours
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∥∇u∥
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∇∥∇u∥
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Overview

INR training
Point set with

oriented normals
Uniform

surface points
Skeletal points Skeletal complex

MILP solving
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Uniform surface sampling

▶ Why? used later for skeletal compression
▶ Sample N points in the ambient space and iterate Newton steps

p← p− ∇u(p)
∥∇u(p)∥2

u(p) (6)

▶ Regularization by repulsion on the tangent plane
▶ Reprojection on the surface
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GPU skeleton tracing

p

qi0

rj

▶ Sample N points (pi) on the surface using Newton’s method
▶ For i = 1 · · ·N

▶ Sample n points qj = pi − t h
n

∇u(pi)
∥∇u(pi)∥

(t = 1 · · ·n)
▶ Find i0 the smallest index such that u(qi0) > 0
▶ Sample n points rj between p and qi0
▶ Find rj with lowest ∥∇u(rj)∥ value
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Simplicial complex extraction [Dou 2022]

p1

sj+2

sj

p0
sj+1

▶ N points xi, M skeletal points si with distance ri.
▶ Coverage matrix: D (N ×M)

Dij = 1 if ∥pi − sj∥ − rj ≤ δ and 0 otherwise

▶ Mixed Integer Linear Problem:

min ∥v∥2
s.t. Dv ⪰ 1

(7)

▶ Link selected points (weighted triangulation)
Implicit Neural Representations 25/59



Results
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Results

Ours Coverage L1-medial VoxelCores
Axis skeleton
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Results

Ours Coverage Axis VoxelCores
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results

Ours Coverage Axis L1-medial skeleton
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Results
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Ours Coverage Axis L1-medial skeleton
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Results

Ours Coverage Ours Coverage
Axis Axis
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With noise
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With noise
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Beyond analysis: shape synthesis

Problem statement
Given two shapes S0 and S1 find a continuum of shapes St, (0 ≤ t ≤ 1)
interpolating between S0 and S1
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Shape interpolation: an ill-posed problem

Needs further hypotheses:
▶ As rigid as possible
▶ Landmark correspondences
▶ Least displacement
▶ Volume preserving
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Shape interpolation: an ill-posed problem
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Shape interpolation: an ill-posed problem

Needs further hypotheses:
▶ As rigid as possible
▶ Landmark correspondences
▶ Least displacement
▶ Volume preserving
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Volume Preserving shape morphing

[D
is

n
ey

’s
1
2

P
ri

n
ci

p
le

s
o
f
A

n
im

a
ti

o
n
]

Our setting
Find a volume preserving shape morphing without explicit correspondences.

Implicit Neural Representations 36/59



Deformation vector field

Advection
Look for a vector field V (x, t) deforming a S0 into S1

ODE for the motion of a point p:

ṗ(t) = V (p(t), t) (8)

How do we link V with the implicit representation?
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Level-set equation (LSE)

Motion of p ∈ S0:
ṗ(t) = V(p(t), t) with p(0) = p

f(x, t) verifies : f(p(t), t) = 0

df(p(t), t)

dt
=

∂f

∂t
(p(t), t) + ⟨∇f(p(t), t), ṗ(t)⟩ = 0

See e.g. [Osher 2000]
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Level-set equation (LSE)

S0 S1


∂f
∂t + ⟨∇f,V⟩ = 0 on Rd × [0, 1]

f(x, 0) = g0(x) ∀x ∈ Rd

f(x, 1) = g1(x) ∀x ∈ Rd
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In the neural framework
▶ Given V

LSE loss:

lLSE =

∫
Rd×[0,1]

| ∂fθ
∂t
− ⟨∇fθ,V⟩ | dpdt

Boundary condition :

lDirichlet =
∑
i=0,1

∫
Rd

| gi − fθ(., i) | dp+
∑
i=0,1

∫
x∈∂Si

|fθ(x, i)|dx

lNeumann =
∑
i=0,1

∫
Si

| 1− ⟨∇fθ(., i), N⃗Si
⟩ | dp

Eikonal loss :

lEik =

∫
Rd×[0,1]

| 1− | ∇fθ(p, t) || dpdt

Network: fully connected networks (6 hidden layers, 128 neurons per layer,
and Sine activations).
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LSE with handcrafted V (Nise) [Novello et al.
2023]

for interpolation:

V(p, t) = −(g1(p)− fθ(p, t))
∇fθ(t, p)
∥∇fθ(t, p)∥
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Joint learning of fθ and Vθ
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Vx
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▶ Estimate both fθ and V through two neural networks trained end-to-end

lLSE =

∫
Rd×[0,1]

∂fθ
∂t
− ⟨∇fθ,Vθ⟩ | dpdt
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Joint learning of fθ and Vθ
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Volume preservation

Sufficient condition
If divV = 0, then the shape advected by V has constant volume.

See also [Richter-Powell 2022].
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Volume preservation

Sufficient condition
If divV = 0, then the shape advected by V has constant volume.

▶ To build a divergence free vector field V, estimate D and set V = curlD.
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See also [Richter-Powell 2022].
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Eikonal incompatibility

Remark
If div(V) = 0, V preserves the volume of every level set.

Only the conservation of the 0-levelset is necessary.
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Adaptive-divergence

Idea
Augment a divergence free vector field by a quantity that vanishes along the
integral lines ∂S0.
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Adaptive divergence : Formal definition

Definition

V ∈ Rd has adaptive divergence w.r.t. S0 if there exists a divergence-free W
with associated flow ϕW and a vector field F s.t. ∀t ∈ [0, 1]:

∀x ∈ Rd V(x, t) = W(x, t) + F(x, t)

∀x ∈ ∂S0 F(ϕW(x, t), t) = 0

∀x ∈ ∂S0 div(F)(ϕW(x, t), t) = 0 so div(V)(ϕW(x, t), t) = 0
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Volume preservation with Adadiv
Theorem (Volume Preservation)

If V has adaptive divergence w.r.t. S and corresponding flow ϕV:

dtV ol(ϕV(S, t)) = 0
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Adaptive Divergence - Numerical construction

Vθ = curl(Dθ) + β(fθ)∇uθ

β(x) : R −→ R

1− e−α|x|(1 + α|x|) 1− e−αx2
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Result in 2D
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Result in 2D
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Topological changes
Weak link between fθ and Vθ

Optimization problem :

lLSE =

∫
Rd×[0,1]

∂fθ
∂t
− ⟨∇fθ,Vθ⟩ | dpdt

∂tfθ + ⟨∇fθ,Vθ⟩ ≠ 0

⇒ No exact volume conservation, even if div(Vθ) = 0

Eikonal loss
LSE loss
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Results
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Volume evolution comparison

▶ Adaptive divergence - Our method
▶ Neural implicit surface evolution [Novello et al. 2023]
▶ landmark free INSD [Sang et al. 2025]
▶ Lipschitz-MLP[Liu et al. 2022]
▶ Optimal transport with Sinkhorn loss [Feydy et al. 2018]

Video
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Robustness to noise
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Conclusion

▶ INR biased toward smoothness (noise robustness vs loss of details)
▶ Useful for shape analysis
▶ Relaxation of the divergence free constraint
▶ Consistent intermediate steps with volume preservation
▶ Better with 1-Lipschitz guaranteed neural networks?

▶ Volume Preserving Neural Shape Morphing, C. Buonomo, J. Digne, R. Chaine, Computer Graphics Forum,
Symposium on Geometry Processing, 2025

▶ Neural skeleton: implicit neural representation away from the surface, M. Clémot and J. Digne, Shape
Modeling International 2023 (best paper award)
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