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Geometry Processing

Geometry Processing

Turning real-world object surfaces into virtual representations and processing
them.

Bremen University

CNRS-MAP
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Shape representation

» Point sets: sparse but no watertight PointNet [Qi 2017], KPConv
[Thomas 19]...

» Meshes: efficient but needs to be computed EdgeConv [Hanocka 2019,

DeltaConv [Wiersma 2022]

» Implicit Representation: hard to use for analysis purpose

Issues for Deep Learning on surfaces

Need for an equivariant convolution on the surface.

Shape Database
Lack of data variety (geometry and topology)

ShapeNet

déadﬂlsﬁﬂa
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Implicit Representation in Geometry Processing

» Representing a shape through a set of distances to a set of primitives
[Bloomenthal 90]

» Mesh reconstruction (Marching Cubes [Lorensen 87]) or Direct
Rendering (Sphere tracing [Hart 96])

» For surface reconstruction: from a point set build a signed distance field
[Hoppe 92]

» Poisson Surface Reconstruction [Kazhdan 2006], [Alexa 2003] Moving
Least Squares Surfaces

A long standing idea
Find a good function basis for representing the signed distance function. J
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Implicit Neural Representation in Geometry
Processing

INR
Train a neural network to represent a shape. (Deep SDF [Park 2019],
Occupancy Network [Mescheder 2018]).

» Optimization per shape: no database.

[Lipman 2019]
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Implicit Neural Representation in Geometry
Processing
INR

Train a neural network to represent a shape. (Deep SDF [Park 2019,
Occupancy Network [Mescheder 2018]).

» Optimization per shape: no database.

[Lipman 2019]

Focus on two problems:
» Shape analysis: extract the topology of a shape

» Shape synthesis: interpolate between two shapes

Implicit Neural Representations
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Signed distance fields
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Signed distance field are useful

» Requires to compute ray/surface intersection.
» Direct intersection with explicit representations (Meshes/Geometric
primitives)
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Sphere tracing [Hart 1996]

Implicit Neural Representations

. Input: a point x and direction v,

a signed distance field u.

. Initialize t =0
. While t < D

3.1 xs =x+tv

3.2 d= u(xt)

3.3 If d < € Return x;

3.4 Else Increment t =t +d
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Neural Skeleton: Regularizing INR away from
the surface

WY

» Neural skeleton: implicit neural representation away from the surface,
Mattéo Clémot and Julie Digne 2023

Implicit Neural Representations 9/59



Extract the medial axis of a shape based on an
INR

» Extract topological data from shapes (genus, medial axis) even with
noise, missing data and outliers.

» All the topological information is included within the signed distance
field.

» How do we represent this signed distance field? Implicit Neural
Representation
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Medial Axis

Definition

A point p belongs to the medial axis of a compact shape if it has at least two
distinct nearest neighbors on the shape surface.
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Medial Axis: classical methods

1333233

» Curve Skeleton (Mesh Contraction [Au 2008], Mean Curvature Flow
[Tagliasacchi 2012, visual hull [Livesu 2012], local symmetries
[Tagliasacchi 2009, Huang 2012])

» Computational Geometry: Voronoi subcomplex [Dey 2002], power crust
[Amenta 2001]

» Signed distance field and voxelization: VoxelCores [Yan 2018]

cchi et al. 2016]
wsacehi et al. 2016]

e
from [Tagliz

from [Tagliasa

Result
Often needs to be compressed. [Dou 2022] J
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Optimization Process

» Input data a set of points (x;,n;),i € T

» Look for u continuous and a.e. C! such that:

IVull - =1
Ups = 0 (1)
VU|95 =n
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Optimization Process

» Input data a set of points (x;,n;),i € T

» Look for u continuous and a.e. C! such that:

[Vul] =1
Ups = 0 (1)
Vups =mn

» Loss [Gropp 2020]

1(0) = (Juo(2)]* +7[|[Vug(2) —n(@)[|*)dz + X [ (|[Vug()] —1)*dz
JzeS JxeR3
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Optimization Process

» Input data a set of points (x;,n;),i € T

» Look for u continuous and a.e. C! such that:

[Vul] =1
Ups = 0 (1)
Vups =mn

» Loss [Gropp 2020]
10)= [ (o) +7IVuow) ~n(e)| s+ 3 [ (1 Vuoa)]|~1)ds

» Approximation by Monte Carlo
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Eikonal Equation

» Infinite number of solutions

» Viscosity solution theory: allows to select
the right solution

» Use smooth eikonal equation (not
practical [Lipman 2019])

1
|V — eAu =1 IN A0 1

» Consequence: blobs appear

[Camilli 2014]

Infinite number of solutions

Not an issue close to the surface — but far away? J
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Which neural network?

> MLP (6 layers, 128-256 neurons/layer)
with ReLU activation functions

» ReLU: piecewise constant gradient.

» Sitzman (2021) replaces ReLLU with sine
activation function: smooth function

Implicit Neural Representations

||wn,
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TV regularization

> Look for a smooth surrogate for the signed
distance function

> Medial axis: zeros of the gradient
» Add the TV of the gradient norm.

Loy = [ 191Vl @)l

» Rationale: minimize the measure of the zeros of
the gradient set (counter-example!)
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TV regularization - some analysis

» The TV term favors that u has no second order differential content along
the gradient lines

Since Vu = (ug, uy, uz), it follows:

V|Vul| = Vy/uZ + u2 + u2

Uy Ugg + 2UyUgy + 2Uz Uy,

1
— m 2Ug Uy + 2y Uy + 2U Uy,
2Ug Uy + 2Uylzy + 2U U,
B Vu
IVl
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Total loss

» Eikonal loss:

‘Ceikonal - ,/]Rﬁ (1 - ||vu(p)H)2 dp

» Surface loss:

T () Vulp)
.Csurfacr/m (p) dp+/ml n(p)]| ||Vu(p)||dp

» Learning point loss

o ) - Vd(p)
Creamming = 3 (u(p +Zl ||w TTa0

pEP
» + TV loss
Loss

L= Aeﬁeikonal + Asﬁsurface + Alﬁlearning + ATVETV
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Resulting Fields
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Overview

T — INR training ;
Point set with Uniform Skeletal points Skeletal complex
oriented normals surface points MILP solving
- - i ol gy

st. Dv>1

Lsurfaces Leikonal
Licarning) LTV
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Uniform surface sampling

» Why? used later for skeletal compression

» Sample N points in the ambient space and iterate Newton steps

~ Vulp) .
RN TR v

» Regularization by repulsion on the tangent plane

» Reprojection on the surface
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GPU skeleton tracing

» Sample N points (p;) on the surface using Newton’s method
» Fori=1---N

» Sample n points ¢; = p; — th Vulpd) t=1-

“n TV u(p)] +n)
» Find 7o the smallest index such that u(g;,) > 0

» Sample n points r; between p and g;,

» Find r; with lowest ||Vu(r;)|| value
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Simplicial complex extraction [Dou 2022]

» N points x;, M skeletal points s; with distance 7;.
» Coverage matrix: D (N x M)

D;; = 11if ||p; — sj]| —r; < and 0 otherwise
» Mixed Integer Linear Problem:

min  ||v]f2
st. Dv>=1

» Link selected points (weighted triangulation)

Implicit Neural Representations
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Results
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Results

L858
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Ours Coverage L1-medial VoxelCores
Axis skeleton
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Results

Ours Coverage Axis  VoxelCores
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results

Ours Coverage Axis Li-medial skeleton
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Results

Coverage Axis Li-medial skeleton
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Results

Ours Coverage Ours Coverage
Axis Axis
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With noise
0%

Ours
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With noise
0% 0.5%
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Beyond analysis: shape synthesis

Problem statement

Given two shapes Sy and S find a continuum of shapes S;, (0 < ¢ < 1)
interpolating between Sy and Sy

—>
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Beyond analysis: shape synthesis

Problem statement

Given two shapes Sy and S find a continuum of shapes S;, (0 <t¢ < 1)
interpolating between Sy and Sy

VR

—
N A
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Shape interpolation: an ill-posed problem

Needs further hypotheses:
» As rigid as possible

5 2016]
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Shape interpolation: an ill-posed problem

Needs further hypotheses:
> As rigid as possible

» Landmark correspondences

[Baxter 2011]
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Shape interpolation: an ill-posed problem

Needs further hypotheses:
» As rigid as possible
» Landmark correspondences

» Least displacement

¥ &
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Shape interpolation: an ill-posed problem

Needs further hypotheses:
» As rigid as possible
» Landmark correspondences
» Least displacement

» Volume preserving

[Eisenberger 2018]
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Volume Preserving shape morphing

g
E
<
%5
£
[a}
é
Our setting
Find a volume preserving shape morphing without explicit correspondences. J
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Deformation vector field

Advection

Look for a vector field V(x,t) deforming a Sy into Sy

ODE for the motion of a point p:

Implicit Neural Representations
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Deformation vector field

Advection

Look for a vector field V(x,t) deforming a Sy into Sy

ODE for the motion of a point p:

How do we link V' with the implicit representation?

Implicit Neural Representations
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Level-set equation (LSE)

Motion of p € Sp:
p(t) = V(p(t),t) with p(0) =p

f(z,t) verifies : f(p(t),t) =0
W), _ of

a ot
See e.g. [Osher 2000]

(p(), ) + (VF(p(t),1), p(t)) =0
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Level-set equation (LSE)

A

VAY
| >
PLA -

v
S

S1
9 4 (Vf, V) =0onR?x0,1]

f(v( 0) = go(;lf) Yo € R?
flz,1) = g1(z) Yz € R?
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In the neural framework

» Given V
LSE loss:

0
lrse :/ % —(Vfe, V) | dpdt
R4 x[0,1]

Boundary condition :

IDirichlet = Z / | dp+ Z / ‘f@ x,1 |d'Ij

i=0,1 i=0,17/2€9S;

INeumann = Z / |1_ er )7N51> | dp

1=0,1

Eikonal loss :
= [ 11 | Vipit) | dpde
R x[0,1]

Network: fully connected networks (6 hidden layers, 128 neurons per layer,
and Sine activations).
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LSE with handcrafted V (Nise) [Novello et al.
2023]

for interpolation:

Vf(g(f p)
IV fo(t,p)]|

V(p,t) = —(91(p) — fo(p, 1))

Source
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Joint learning of fy and Vy

» Estimate both fy and V through two neural networks trained end-to-end

0
tse = [ S0 (V0. Va) | dpa
Rix[0,1] O
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Joint learning of fy and Vy

Source

Free V
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Joint learning of fy and Vy

Source

Free V

Fails with a simple translation.
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Volume preservation

Sufficient condition
If div'V = 0, then the shape advected by V has constant volume. J

See also |Richter-Powell 2022].
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Volume preservation

Sufficient condition
If div V = 0, then the shape advected by V has constant volume. J

» To build a divergence free vector field V, estimate D and set V = curl D.

See also [Richter-Powell 2022].

Implicit Neural Representations 44/59



Result
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Eikonal incompatibility

Remark J

If div(V) = 0, V preserves the volume of every level set.

AN

[Jiso0:g(x)=1
[lisol:gx)=0

SRR

i
[:] = +5

Only the conservation of the 0-levelset is necessary.
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Adaptive-divergence

Idea

Augment a divergence free vector field by a quantity that vanishes along the
integral lines 0Sy.
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Adaptive divergence : Formal definition

Definition

V € R? has adaptive divergence w.r.t. Sy if there exists a divergence-free W
with associated flow ¢w and a vector field F s.t. V¢ € [0,1]:

Yz € R? V(z,t) = W(x,t) + F(x,t)
Vo € 0So F(ow (z,t),t) =0
Vo € 08y div(F)(ow(x,t),t) = 0 so div(V)(ow(x,t),t) =0
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Volume preservation with Adadiv

Theorem (Volume Preservation)

If V has adaptive divergence w.r.t. S and corresponding flow ¢v :

d:Vol(pv(S,t)) =
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Adaptive Divergence - Numerical construction

Vi = curl(Dg) + B(fo) Vug
B(z) :R—R

1 —e*a‘$|(1+a|x|) 1 — g2
o
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Result in 2D
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Result in 2D

Div.-free

Adaptive Div.

-15

-20
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Results
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Topological changes
Weak link between fy and Vy

Optimization problem :

: 97 |
lLse = / % —(Vfs, Vo) | dpdt
JRIx[0,1] Yt

Otfo +(Vfe, Vo) #0

= No exact volume conservation, even if div(Vy) = 0

1.00

0550
A 025
. .
0.00
u 025
-0.50

-0.75

-1.00

LSE loss
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Results

Frrressd4
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Volume evolution comparison

— adadiv 014
LECE -
— insd 0.12
—ip
0804 — OT 010
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0.70 0.04
0.02
0.65
0.00
0.0 0.2 0.4 0.6 0.8 10 0.‘\7 0.2 04 0.6 0.8 10
» Adaptive divergence - Our method
» Neural implicit surface evolution [Novello et al. 2023]
» landmark free INSD [Sang et al. 2025]
» Lipschitz-MLP[Liu et al. 2022]
» Optimal transport with Sinkhorn loss [Feydy et al. 2018]
Video

Implicit Neural Representations

57/59



Robustness to noise
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Conclusion

» INR biased toward smoothness (noise robustness vs loss of details)

» Useful for shape analysis

» Relaxation of the divergence free constraint

» Counsistent intermediate steps with volume preservation

» Better with 1-Lipschitz guaranteed neural networks?

» Volume Preserving Neural Shape Morphing, C. Buonomo, J. Digne, R. Chaine, Computer Graphics Forum,
Symposium on Geometry Processing, 2025

>

Neural skeleton: implicit neural representation away from the surface, M. Clémot and J. Digne, Shape
Modeling International 2023 (best paper award)
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